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Predicting blood-brain barrier (BBB) permeation remains a challenge in drug design. Since it
is impossible to determine experimentally the BBB partitioning of large numbers of preclinical
candidates, alternative evaluation methods based on computerized models are desirable. The
present study was conducted to demonstrate the value of descriptors derived from 3D molecular
fields in estimating the BBB permeation of a large set of compounds and to produce a simple
mathematical model suitable for external prediction. The method used (VolSurf) transforms
3D fields into descriptors and correlates them to the experimental permeation by a discriminant
partial least squares procedure. The model obtained here correctly predicts more than 90% of
the BBB permeation data. By quantifying the favorable and unfavorable contributions of
physicochemical and structural properties, it also offers valuable insights for drug design,
pharmacological profiling, and screening. The computational procedure is fully automated and
quite fast. The method thus appears as a valuable new tool in virtual screening where selection
or prioritization of candidates is required from large collections of compounds.

Introduction

To be effective as therapeutic agents, centrally acting
drugs must cross the blood-brain barrier (BBB). Con-
versely, to be devoid of unwanted central nervous
system (CNS) effects, peripherally acting drugs must
show limited ability to cross the BBB. In both cases,
the BBB permeability of drug candidates must be
known. However, the experimental determination of
brain-blood partitioning is difficult, time-consuming,
and expensive and not suitable to screen large collec-
tions of chemicals.1 A broadly applicable method for
predicting the BBB permeation of candidates at an early
stage of discovery would have a great impact in drug
research and development.

Entry into the brain is a complex phenomenon which
depends on multiple factors. It is known that relatively
lipophilic drugs can cross the BBB by passive diffusion
as influenced by their H-bonding capacity. Polar mol-
ecules normally do not cross the BBB, but sometimes a
process of active transport facilitates their penetration.
Local hydrophobicity, ionization profile, molecular size,
lipophilicity, and flexibility are other important param-
eters which play a role in BBB permeation.1,2 Not only
is the number of accepted or donated H-bonds important
but also their 3D distribution, due to the anisotropic
nature of all biological membranes.3

Furthermore, plasma protein binding, active efflux
from the CNS, and metabolism can also influence BBB
penetration. Thus, unambiguous and reliable data on
BBB permeation are difficult to find, since literature
values are often uncertain and contradictory. CNS-
active drugs (CNS+) can cross the BBB by different

mechanisms. For CNS-inactive drugs (CNS-) the situ-
ation is even more complex; some simply do not pen-
etrate, whereas others are rapidly metabolized or
expelled by active efflux processes.

Various authors1-2,4,5 have attempted to predict BBB
transport using lipophilicity (log P), solvatochromic
parameters, topological indexes, or combinations of
these. To the best of our knowledge, no attempt has been
to use descriptors derived from 3D molecular interaction
fields. We have been involved in the development and
validation of VolSurf, a method able to convert 3D fields
into new descriptors well-suited for structure-pharma-
cokinetic relationships and have proven its efficacy,
simplicity of use, and chemical interpretability.6 Here,
we use this methodology to develop a quantitative model
for BBB permeation. Such a model should be easy to
use and to interpret and well-suited for external predic-
tions.

Computational Methods
Database. The starting compounds analyzed in this study

were the 40 agents presented by Giardina et al.,7 to which four
compounds taken from the work of Shaw et al.8 were added
(Table 1). The ability of the drugs to enter the brain was
obtained by comparing their antinociceptive potency in the
mouse abdominal constriction test (MAC),7 following subcu-
taneous and intracerebroventricular administration. A basic
assumption in our study was passive permeation. The present
dataset contains a number of related, but chemically diverse,
compounds which are either brain-penetrating (BBB+), have
a moderate permeation (BBB(), or have little if any ability to
cross the blood-brain barrier (BBB-). All the reported
compounds contain one or two chiral centers, and all except
eight had been measured as racemates or mixtures of race-
mates.7 Because it is impossible to model mixtures of stereo-
isomers in 3D, the reported mixtures were modeled separately
for their respective stereoisomers, assuming negligible stereo-
selectivity in permeation, a reasonable assumption for passive
permeation. As a result, the number of compounds in the set
increased from 44 to 110 (Table 1).
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The compounds used as the test set for external prediction
were also obtained from the literature. Instead of inspecting
large directories of chemicals which require a subjective

automatable classification and where CNS activity is often
reported but not BBB permeation, we used reliable data on
experimental BBB permeation. Our literature search led to

Table 1. The 110 Compounds Used To Obtain the Training Set Model
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Table 1 (Continued)
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108 drugs with well-characterized BBB behavior. Here also,
racemic drugs were modeled as separate enantiomers, result-
ing in a final test set of 120 compounds (Tables 2 and 3).

Computational Approach. The overall procedure con-
tained the following four major steps:

(1) The three-dimensional structure of the compounds was
built.

(2) The compounds were submitted to multivariate charac-
terization based on their interaction energy with chemical
probes. Molecular mechanics force fields or semiempirical
methods as well as ab initio methods can be used for this
purpose. Here, we used the GRID9 program to calculate the
3D molecular interaction fields.

(3) Molecular descriptors were calculated using the VolSurf
program.6

(4) Chemometric tools (PCA, discriminant PLS) were used
to correlate the data and build a BBB permeation model.

It is important to note that steps 2-4 were performed
automatically by the VolSurf program.

Modeling of 3D Molecular Structures. It has been
demonstrated that most VolSurf descriptors are only margin-
ally influenced by conformational sampling.6,10 However, these
results may depend on the set of compounds and their property
space. To study the impact of conformation on the BBB model
obtained, two different protocols were used to model the

Table 2. The Compounds Used for External Prediction

number name BBB ref number name BBB ref

1 L364718_r + 41 26 oxazepam + 36
2 apomorphine_r + 4 27 perphenazine + 4
3 alprazolam + 36 28 progesterone + 30
4 caffeine + 29 29 promazine + 4
5 chlorpromazine + 4 30 promethazine_r + 4
6 clobazam + 36 31 promethazine_s + 4
7 clonidine + 4 32 rivastigmine + 44
8 cp20 + 43 33 roxindole + 4
9 cp21 + 43 34 skb_b + 47

10 cp24 + 43 35 skb_c + 47
11 cp25 + 43 36 tamitinol + 4
12 cp29 + 43 37 testosterone + 30
13 cp94 + 43 38 thiopental + 4
14 desipramine + 4 39 thioridazine + 4
15 diazepam + 36 40 zolantidine + 45
16 diphenhydramine + 48 41 mepyramine + 5
17 doxylamine_r + 4 42 zolantidine_der + 5
18 doxylamine_s + 4 43 L663_581 + 41
19 estradiol + 30 44 L364_718_r + 41
20 haloperidol + 4 45 L365_260_r + 41
21 imipramine + 4 46 L365_260_s + 41
22 naltrexone_s + 4 47 skb_a + 47
23 naltrexone_r + 4 48 flupentixol_cis + 4
24 nordazepam + 36 49 flupentixol_tra + 4
25 morphine + 42

50 mefloquine_rs - 54 86 lomefloxacin - 38
51 mefloquine_sr - 54 87 loperamide - 4
52 mefloquine_rr - 54 88 loratadine - 50
53 mefloquine_ss - 54 89 meloxicam - 46
54 EMD61753_ss - 32 90 mequitazine - 4
55 M3G - 42 91 metab-mefloquine - 54
56 M6G - 42 92 monoL663581 - 35
57 a56726 - 38 93 corticosterone - 30
58 a60616 - 38 94 norfloxacin - 38
59 aldosterone - 30 95 ofloxacin - 38
60 astemizole - 4 96 pefloxacin - 38
61 atenolol - 4 97 pirenzepine - 4
62 bis_L663581 - 35 98 piroxicam - 46
63 carbidopa - 52 99 salbutamol_r - 4
64 carebastine - 4 100 salbutamol_s - 4
65 carmoxirol - 4 101 skb-d - 47
66 cetirizine_r - 49 102 skb-e - 47
67 cetirizine_s - 49 103 skb-f - 47
68 ciprofloxacin - 38 104 skb-g - 47
69 cortisol - 30 105 skb-h - 47
70 cp102 - 43 106 skb-i - 47
71 cp107 - 43 107 tenoxicam - 46
72 cp41 - 43 108 terfenadine_r - 4
73 desca_loratadine - 50 109 terfenadine_s - 4
74 difloxacin - 38 110 cimetidine - 5
75 domperidone - 4 111 icotidine - 5
76 dopamine - 51 112 lupitidine - 5
77 ebastine - 4 113 ranitidine - 5
78 enoxacin - 38 114 temelastine - 33
79 fexofenadine_r - 50 115 tiotidine - 5
80 fexofenadine_s - 50 116 tiotidineDerivative - 5
81 fleroxacin - 38 117 NH2-cipro - 53
82 furosemide - 4 118 NH2Me-cipro - 53
83 isoxicam - 46 119 rufloxacin - 53
84 L364718_s - 41 120 sparfloxacin - 38
85 levodopa - 52
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compounds, each protocol being based on a different conforma-
tion for each compound.

In a first protocol, 2D-to-3D structure conversions were
carried out by the program Concord,11 and the resulting

conformations were refined by energy minimization with the
Merck force field as implemented in Sybyl 6.4.12

In a second protocol the 3D structures were imported in the
Amsol program13 and fully minimized using a AM1 semiem-

Table 3. 2D Structure for Some Compounds Listed in Table 2
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pirical method13 including solvation effects. In the presence
of multiple low-energy conformations, the most diverse mo-
lecular structures were selected in order to obtain the maxi-
mum variability in VolSurf descriptors.

All chemicals were modeled in their neutral form. The
results of both protocols were analyzed as described below.

Multivariate Characterization of the Compounds by
Their Molecular Interaction Fields. A molecular interac-
tion field may be viewed as a 3D matrix, the elements of which
(called grid nodes) are the attractive and repulsive forces
between an interacting partner (the probe) and a target (the
molecule or macromolecule). Most properties related to mo-
lecular interactions can be represented in a 3D molecular field.
Well-known examples of a 3D molecular field are the molecular
electrostatic potential (MEP),14 the molecular lipophilicity
potential (MLP),15 or GRID9 fields, one of the most widely used
computational tools to map molecular surfaces of drugs and
macromolecules.

The interaction of molecules with biological membranes is
mediated by surface properties such as shape, electrostatic
forces, H-bonds, and hydrophobicity. Therefore, the GRID force
field, which uses a potential based on the total energy of
interaction (the sum of Lennard-Jones, H-bonding and elec-
trostatic terms) between a target molecule and a probe, was
used to characterize putative polar and hydrophobic interac-
tion sites around target molecules. The water probe was used
to simulate solvation-desolvation processes, while the hydro-
phobic probe (called DRY in the GRID program) and the
carbonyl probe (O) were used to simulate drug-membrane
interactions. The DRY probe is a specific probe to compute the
hydrophobic energy;16 the overall energy of the hydrophobic
probe is computed at each grid point as Eentropy + ELJ - EHB,
where Eentropy is the ideal entropic component of the hydro-
phobic effect in an aqueous environment, ELJ measures the
induction and dispersion interactions occurring between any
pair of molecules, and EHB measures the H-bonding interac-
tions between water molecules and polar groups on the target
surface.

Calculation of Molecular Descriptors. 3D molecular
interaction fields can be automatically converted into simpler
molecular descriptors using a procedure called VolSurf.6 The
method is simple to apply and is specifically designed to
produce descriptors related to pharmacokinetic properties,
starting from 3D molecular field maps. In the standard
procedure, GRID interaction fields are calculated around the
target molecules.

The basic concept of VolSurf is to transform the information
present in 3D molecular field maps into a limited number of
quantitative numerical descriptors which are easy to under-
stand and to interpret. In computational molecular graphics
the use of molecular surfaces always involves partitioning the
surface into small portions of tesserae or polyhedra in order
to allow rendering, back-illumination, and other graphic
effects. In such cases, a single feature and information, the
molecular surface, is spread out into many small contiguous
pieces of information. The VolSurf methodology proceeds in
an exactly opposite manner. From many tesserae containing
the same information, VolSurf builds a single framework (a
volume and/or a surface) related to specific molecular proper-
ties.

The literature contains various algorithms to compute
molecular descriptors derived from molecular surfaces and
volumes.17 The originality of VolSurf lies in the fact that
surfaces, volumes, and other related descriptors can be ob-
tained directly from 3D molecular interaction fields without
complex algorithms of trigonometric projections, recursive
generations, and tessellation. Molecular recognition is achieved
using software as in image analysis, but the image information
is extracted by adding external chemical knowledge. VolSurf
does so by selecting the most appropriate descriptors and
parametrization according to the type of 3D maps under study.

VolSurf has the advantage of producing descriptors using
the 3D information embedded in any map. Not all the
information can be transferred from 3D to these new molecular
descriptors, but practical examples do exist6,10,18 to show that
relevant information is indeed extracted. Moreover, the Vol-
Surf transformation is fast and the results are usually easy
to interpret, as shown below. Also, the descriptors have a clear
chemical meaning and are lattice-independent, and some of
them can be projected back into the original 3D grid map to
help interpretation.

The molecular descriptors obtained are reported in Table
4. They refer to molecular size and shape, to size and shape of
hydrophilic and hydrophobic regions, and to the balance
between them. Hydrogen bonding, amphiphilic moments, and
critical packing parameters are other useful descriptors. The
VolSurf descriptors have been presented and explained in
detail elsewhere.6 However, a more detailed description of the
nonstandard descriptor terms is reported in Table 5. It is
important to note that VolSurf descriptors can be obtained for
small, medium, and large molecules, as well as for biopolymers
such as DNA sequences, peptides, and proteins.

Table 4. Definition of VolSurf6 Parametersa

numbering definition

1 total volume (computed at 0.25 kcal/mol)
2 total surface (computed at 0.25 kcal/mol)
3 rugosity ) total volume (Vtot)/total surface (Stot)
4 globularity (Stot/Se; Se) surface area of equivalent sphere with volume ) Vtot)
5-12 volumes (V) of the interactions with the H2O probe at eight energy levels

[-0.2, -0.5, -1.0, -2.0, -3.0, -4.0, -5.0, -6.0 (kcal/mol)]
13-20 integy moment: proportional to distance between barycenter of Stot and V

(at the above energy levels)
21-28 capacity: V/Stot (at the above energy levels)
29-34 energy minima interactions, with water probe, and distances between the energy minima
35-42 volumes (V) of the interactions with the DRY probe at eight energy levels

[-0.2, -0.4, -0.6, -0.8, -1.0, -1.2, -1.4, -1.6 (kcal/mol)]
43-50 integy moment: proportional to distance between barycenter of Stot and V

(at the above energy levels), calculated from DRY probe
51 amphiphilic moment
52 critical packing
53,54 hydrophilic-lipophilic balances
55-62 volumes (V) of the interactions with carbonyl probe at eight energy levels

[-0.2, -0.5, -1.0, -2.0, -3.0, -4.0, -5.0, -6.0 (kcal/mol)]
63-70 H-bond interaction energy at eight energy levels

[-0.2, -0.5, -1.0, -2.0, -3.0, -4.0, -5.0, -6.0 (kcal/mol)]
71 molecular polarizability
72 molecular weight

a Descriptors 1-34 are generated with the water probe, descriptors 35-54 with the hydrophobic probe, and the remaining descriptors
with the oxygen carbonyl probe.
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Statistical Analysis. Principal component analysis (PCA)19

and partial least squares discriminant analysis (PLS)20 are
chemometric tools for extracting and rationalizing the infor-
mation from any multivariate description of a biological
system. Complexity reduction and data simplification are two
of the most important features of such tools. PCA and PLS
condense the overall information into two smaller matrixes,
namely the score plot (which shows the pattern of compounds)
and the loading plot (which shows the pattern of descriptors).21

Because the chemical interpretation of score and loading plots
is simple and straightforward, PCA and PLS are usually
preferred to other nonlinear methods, especially when the
noise is relatively high.

Score and loading plots are interconnected so that any
descriptor change in the loading plot is reflected by changes
in the position of compounds in the score plot. Pairwise
comparison can be made directly with interactive plots22 as
developed in the VolSurf program,6 and the relative contribu-
tions to the property under study are shown in the related
descriptors space.

PCA is a least-squares method and for this reason its results
depend on data scaling. The initial variance of a column
variable partly determines its importance in the model. To
avoid this problem, column variables were scaled to unit
variance before analysis.23 The column average was then
subtracted from each variable. From a statistical point of view,
this corresponds to moving the multivariate system to the
center of the data, which becomes the starting point of the
mathematical analysis. The same autoscaling and centering
procedures were applied to the PLS discriminant analysis.

Once the PCA model was developed, PCA predictions for
new compounds or external test compounds were made by
projecting the compound descriptors into the PCA model. This
was made by calculating the score vector T of descriptors X
and average xj for the new compounds, using the loading P of
the PCA model, according to the following eq 1:

For the PLS discrimination, external predictions were made
using the following equation24 (2):

where yj is the Y column average and Q is the loading vector
for the y space and B the coefficient between the X and Y
spaces.

Software Packages. Three-dimensional molecular struc-
tures were obtained from Concord11 and minimized using
Sybyl12 and Amsol.13 Semiempirical calculations were made

with Amsol AM1aq.13 Molecular interaction fields were pro-
duced using the GRID v 17 program9,16 graphically interfaced
with VolSurf 2.0. GRID is a free software for nonprofit
institutions (contact peter@goodford.daemon.co.uk). Molecular
descriptors, PCA, and discriminant PLS were produced with
the VolSurf 2.0 program.6,25 VolSurf is a free program for
nonprofit institutions, available at http://www.cgate.chm.
unipg.it. [The dataset, the 3D molecular structures, the
interaction fields, the Volsurf descriptors, and the BBB model
are available at the VolSurf Web page.]

The GRID-VolSurf procedure is completely automated and,
in contrast to previous versions of the interface, does not
require any user assistance. For this reason, all the work can
be handled and submitted in batch queue. The computation
of molecular interaction fields and the subsequent computation
of molecular descriptors using the GRID-VolSurf procedure
is rather fast. For example, processing the overall database
of 100 compounds used for external prediction, starting from
3D molecular structures, takes about 2 min at low resolution,
and about 20 min at high resolution with a R10000 Silicon
Graphics 270 MHz CPU.

Results and Discussion

First BBB Permeation Model. In a first investiga-
tion, we searched for a relation between the 3D struc-
ture and the BBB permeation of the dataset consisting
in 110 compounds (Table 1) and 72 descriptors (Table
4). No biological input was given to the model. Three
significant principal components (PCs) were found by
a cross-validation technique. These components ex-
plained about 65% of the total variance of the matrix.
The score plot for the first two PCs is reported in Figure
1, where the compounds are color-coded by their ability
to cross the BBB.

Whereas the second and third PCs describe the
chemical variability and spatial geometry, the first PC
is able to discriminate between the BBB- (open circles),
the BBB( (gray circles), and the BBB+ compounds
(filled circles). Such a result appears of high interest
given that no classification of compounds nor any
training information was given to the PCA model, in
contrast to training procedures such as neural net-
works.26,27 In other words, the first PC in the model was
able, without any external information or training, to
qualitatively and correctly predict the BBB permeation
of the compounds.

Table 5. Nonstandard Descriptors from VolSurf6 Calculation

descriptors definition

integy
moments

Like dipole moments, integy moments express the unbalance between the center of mass of a molecule and the
barycenter of its hydrophilic regions. Integy moments, when referring to hydrophilic regions, are vectors pointing
from the center of mass to the center of the hydrophilic regions. When the integy moment is high, there is a clear
concentration of hydrated regions in only one part of the molecular surface. If the integy moment is small, the
polar moieties are either close to the center of mass or they balance at opposite ends of the molecule and their
resulting barycenter is close to the center of the molecule. When referring to hydrophobic regions, integy moments
measure the unbalance between the center of mass of a molecule and the barycenter of the hydrophobic regions.
All the integy moments can be visualized in the real 3D molecular space. See arrows in Figure 6.

amphiphilic
moment

It is defined as a vector pointing from the center of the hydrophobic domain to the center of the hydrophilic domain
around a molecule. The vector length is proportional to the strength of the amphiphilic moment, and it may
determine the ability of a compound to permeate a membrane.

critical
packing

Critical packing defines a ratio between the hydrophilic and lipophilic part of a molecule. In contrast to the
hydrophilic-lipophilic balance, critical packing refers just to molecular shape. It is defined as Volume (lipophilic
part)/[(Surface(hydrophilic part) × (length of the lipophilic part)] The lipophilic calculations are performed with a
DRY probe at -0.6 kcal/mol and the hydrophilic calculations are performed at -3.0 kcal/mol, respectively.
Critical packing is a good parameter to predict molecular packing such as in micelle formation and may be
relevant in solubility studies in which molecular symmetry and melting point play an important role.

hydrophilic-
lipophilic
balances

This is the ratio between the hydrophilic regions measured at -4 kcal/mol and the hydrophobic regions measured at
-0.8 kcal/mol. The balance describes which effect dominates around a molecule or if they are roughly equally
balanced. If the interaction energy of a probe with a target molecule is smaller than the reported levels, -3 and
-0.6 kcal/mol levels are used.

T ) (X - xj)P′(PP′)-1 (1)

Y ) yj - xjP′(PP′)BQ + XP′(PP′)-1BQ (2)
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A more detailed inspection of the score plot in Figure
1 indicates the misclassification of the two enantiomers
of BRL52974 (compounds 5 and 6). This compound has
been reported as CNS-, its presence in the brain after
single systemic administration being undetectable. In
Figure 1, the two enantiomers appear near the border-
line between BBB+ and BBB( compounds. The reason
for BRL52974 to be an outlier may be due to a limitation
of the statistical model or to a peculiar biological
behavior (e.g., fast efflux or metabolism).

Figure 1 also shows that moderately penetrating
compounds (BBB() tend to cluster together and at the
left of poorly penetrating compounds (BBB-).

The present model was obtained with the Amsol
minimization protocol, but similar results were also
obtained using the minimization procedure in Sybyl.
This demonstrates that a conformational search is of
modest relevance here, and that the faster method for
3D structure generation is also valid.

Before embarking on chemical interpretation and
refinement, it was necessary to test the predictive
capacity of the model using a large test set of compounds
with well-documented BBB behavior.

External Prediction of the First Model. Tables 2
and 3 report the results of a literature search for drugs
with a well-documented BBB behavior profile. Different
chemical and pharmacological classes are included in
these tables, e.g. antipsychotics, dopaminergics, anti-
histamines of first and second generation, anxiolytics,
hypnotics, opioids, â-blockers, CCK antagonists, acetyl-
cholinesterase inhibitors, quinolone antibacterials,
NSAIDs, antiparkinsonians, iron chelators, and hor-
mones. A total of 49 compounds are BBB+ and the
remaining 71 BBB-. The overall 120 drugs were mod-
eled like the training set.

The results for the BBB+ and BBB- compounds in
the test set are shown in Figures 2 and 3 which are PC1

versus PC2 plots such as Figure 1. It clearly appears
that the prediction of BBB permeation is quite satisfac-
tory, with a correct classification of 90% of the BBB+
compounds (40 out of 44), and about 65% accuracy for
the BBB- compounds (46 out of 71).

A detailed investigation of the results of the external
predictions shows interesting findings. Figure 2 reports
the BBB+ compounds projected in the PCA model made
with the training set. The only clear outlier is thiopen-
tal, a very well-known anaesthetic, which is a very
active CNS+ compound. According to our model, thio-
pental is to be considered a moderate BBB penetrating
compound. However, experimental evidence shows28

that thiopental can lead to changes in the permeability
of the blood-brain barrier, thus crossing it by a different
mechanism. Our model, being based on passive diffu-
sion, appears to resolve the contradiction .

Caffeine is correctly located in the BBB+ region and
it is close to the borderline of the moderately penetrating
compounds. Caffeine enters the brain by a combination
of transport mechanisms, namely passive diffusion and
carrier-mediated transport.29 The correct prediction
suggests a predominantly passive diffusion for caffeine.
The diffusion model also correctly predicts the perme-
ation of a number of compounds. For example, the
selective BBB permeation properties of the major steroid
hormones are well-calculated and are coherent with the
experimental data.30

Figure 3 reports the BBB- compounds projected on
the same PCA model. It is clear that the prediction of
BBB- compounds appears more difficult than that of
BBB+ compounds. This is in agreement with the fact
that CNS- drugs can be stopped by the BBB, metabo-
lized before producing their effects, and/or readily
expelled back by active efflux processes. Since our model
is able to predict only passive diffusion, it is not
surprising that predictions for BBB- compounds are

Figure 1. PCA score plot for the compounds reported in Table 1. Filled circles represent the BBB+ compounds, gray circles the
BBB( compounds, and white circles the BBB- compounds. Numbers are those in Table 1. The first PC clusters the compounds
according to their ability to cross the BBB.
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apparently less reliable than for BBB+ compounds.
Some of the mispredicted compounds are discussed
below.

Mequitazine is a first-generation antihistaminic drug
reported4 as BBB-. However, its great structural
similarity with BBB+ antihistamines casts doubt on
this classification. This drug was also an outlier in
another study,4 thus reinforcing the doubts on its BBB
profile.

Loperamide (compound 87 in Figure 3) is a well-
documented CNS- compound, but our model predicts
a BBB+ behavior. Experimental data31 suggest that the
lack of CNS activity of loperamide is due to its active
removal from the brain by P-glycoprotein at the BBB.
Such a result thus explains why our model failed to

predict the BBB profile of loperamide. The same is true
of asimadoline EMD6175332 (compound 54).

Terfenadine (108 and 109 in Figure 3) is a second-
generation antihistamine with very low CNS activity.33

However, the model predicts terfenadine to be able to
cross the blood-brain barrier. Assuming that the model
is correct, how can terfenadine be explained to lack CNS
effects? Experimental evidence shows33 a fast metabo-
lism of terfenadine to fexofenadine. Fexofenadine (79
and 80) is predicted by the model to be hardly able to
cross the BBB (see Figure 3). This could therefore be
the reason terfenadine shows very few CNS effects, even
if by itself it could cross the blood-brain barrier. The
same applies to ebastine (77 in Figure 3), which is
rapidly metabolized to carebastine (64), a zwitterionic

Figure 2. PCA predictions for the BBB+ compounds reported in Tables 2 and 3. Some of the apparently mispredicted compounds
are labeled in the plot. The plot can be superimposed on Figure 1.

Figure 3. PCA predictions for the BBB- compounds reported in Tables 2 and 3. Some apparently mispredicted compounds are
labeled in the plot. The plot can be superimposed to Figure 1.
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compound well predicted by the model as being a BBB-
compound.34

Although the model fails to correctly predict the BBB
profile of a few compounds, the results of the external
predictions can be considered as satisfactory. Indeed,
there is other experimental evidence for the majority
of mispredicted compounds, indicating that the predic-
tions may in fact be correct. Moreover, our model is also
able to predict the penetration trend of some hitherto
poorly predicted compounds.

For example, the three benzodiazepines L663581,
L365260, and L364718, the cholecystokinin (CCK)
antagonists,35 and two hydroxylated metabolites of
L663581 were compared with the BBB permeation of
diazepam (a well-known BBB+ drug).36 The sequence
of experimental BBB permeation was diazepam >
L663581 g L364718 ) L365260 . mono-OH-L663581
> di-OH-L663581,35 with the last two compounds as
BBB-. The model correctly predicts this BBB perme-
ation trend. Interestingly, this trend also confirms that
lipophilicity is not the only or main property controling
BBB penetration. Alprazolam and clobazam, two other
benzodiazepines, have a lipophilicity similar to that of
mono-OH- and di-OH-L668581.35 However, alprazolam
and clobazam readily enter the brain, whereas the two
metabolites are unable to do so.35 As clearly demon-
strated here, other factors than lipophilicity play an
important role in the BBB transfer.

Another example of the utility of our model is seen
in the ranking of antibacterial quinolones. Although
opinions differ on the BBB transport of quinolones,37 it
is well-known that they exhibit a lower concentration
in brain than in most other tissues,38 implying a low
BBB permeability. Indeed, our model classifies all
quinolones as BBB-. However, compounds a60616,
a56726, and difloxacin are close to the borderline of
moderate BBB+ compounds, whereas the others are

predicted as increasingly stronger BBB- in the se-
quence rufloxacin, ciprofloxacin, pefloxacin, sparfloxa-
cin, lomefloxacin, fleroxacin, enoxacin, norfloxacin, and
ofloxacin. The predicted trend is in agreement with
experimental results.38 It is interesting to note that the
recently discovered 6-aminoquinolone antibacterials39

are predicted to be less BBB penetrating than the
correspondent 6-fluoroquinolones. In fact, the 6-amino
derivative of ciprofloxacin39 is predicted a much poorer
BBB permeator than ciprofloxacin itself.

A Refined BBB Permeation Model. The two
datasets containing the training set7,8 and the test set
(except the major outlier mequitazine) were combined
in a unique matrix containing 229 compounds and 72
descriptors. PLS discriminant analysis was carried out,
assigning to the BBB+ compounds a categorical (not
thermodynamic) score 1, and to the BBB- and BBB(
compounds a score -1. This procedure is equivalent to
those used by other researchers26,27 when training
neural nets. However, in contrast to procedures in
neural networks, we checked the existence of relevant
information on BBB permeation before building and
training the model. It is suggested here that simple
linear models such as PCA should always be used before
training models, especially when nonlinear methods are
used in combination with binary descriptors such as
structural keys, fingerprints, or topological indices.

Two significant latent variables emerged from the
PLS model and cross- validation. The PLS t1-t2 score
plot of the resulting model is shown in Figure 4. The
model distinguishes well between the BBB+ and BBB-
compounds, better than the unbiased PCA model.
Because this result was obtained by adding information
to the model, it can be trusted only because a strong
signal existed before training.

BBB evaluation is quite straightforward with the
discriminant PLS. A BBB+ behavior was assigned to a

Figure 4. Discriminant PLS t1-t2 score plot for the global model. The model offers a good discrimination between the BBB+
and BBB- compounds, since it assigned a correct BBB profile to > 90% of the compounds. A confidence interval is built in the
t1-t2 space, where BBB prediction can be borderline and doubtful. b, BBB+ compounds; O, BBB- compounds.

Predicting Blood-Brain Barrier Permeation Journal of Medicinal Chemistry, 2000, Vol. 43, No. 11 2213



compound having a score >0.0, and a BBB- behavior
to a compound with a score <0.0. The model correctly
assigned a BBB profile to more than 90% of the
compounds. However, since the prediction error (SDEP)40

of the discriminant PLS was 0.6 unit, a confidence
interval was built in the t1-t2 space between the BBB+
and BBB- regions, as shown in Figure 4. In this
interval, BBB prediction can be borderline and doubtful.

The coefficient plot of the model so obtained (Figure
5) reports the contribution of all VolSurf descriptors in
Table 4. The vertical bars represent the contribution of
each single descriptor, with a short bar being an
unimportant descriptor and a long bar an important
descriptor. The last bar on the right represents the
biological response, here the BBB permeation. The
conclusions to emerge from this plot are as follows:

Descriptors of polarity such as hydrophilic regions
(W1-W8), capacity factors (C1-C8), and H-bonding
(H1-H8) are inversely correlated with BBB perme-
ability. W1-W8 descriptors refer to polar water-acces-
sible surface areas (PWASA), indicating that BBB
permeation decreases when the polar surface increases.
This means that, besides H-bonding potential, other
factors influence BBB permeation, e.g. charge distribu-
tion and electron lone pairs. Capacity refers to polar
interactions per surface unit. While diffuse polar regions
are tolerable for BBB permeation, dense and localized
polar regions are markedly detrimental.

An increase in H-bonding capacity is known to be
detrimental for permeation. In addition, the contribu-
tion of the integy moment (descriptors Iw1-Iw8) dem-
onstrates that, besides the number of H-bonds, their 3D
distribution also influences BBB permeation.

The descriptors of hydrophobic interactions (D1-D8)
are directly correlated with BBB permeation, but their
role appears smaller than that of the polar descriptors.

The size and shape descriptors have no marked
impact on BBB permeation. In contrast, critical packing
(CP) and the hydrophilic-lipophilic balance (HL) are
important descriptors.

Globally, it is the balance of all descriptors, in other
words of molecular properties, which is seen to control
BBB permeation.

As an example of the interpretative value of VolSurf,
Figure 6 reports a visual comparison of the GRID 3D
molecular fields of the BBB- compound SB204459 and
of the BBB+ compound GR88377 (see Table 1), chosen
because of their similar 2D structure. The gray zones
around the molecules represent the hydrophilic regions.
The arrows represent the vectors of the integy moments.
The hydrophilic regions of SB204459 are larger than
those of GR88377 and distributed in different regions
of the 3D space. From Figure 5 we can deduce that the
size of these regions is inversely correlated with BBB
permeability, thus explaining why SB204459 is a poorly
penetrating compound. The pattern of integy moment
vectors for SB204459 is noticeably different from that
of GR88377, demonstrating the importance of the loca-
tion of the polar regions.

Conclusion

The good results of the PCA prediction and PLS
discriminant models demonstrate that it is possible to
predict BBB permeation from the 3D molecular struc-
ture of drug candidates.

The model interpretation is in good agreement with
the known molecular factors influencing BBB perme-
ation. In addition, and this outlines the originality of
the method, VolSurf allows the relevant 3D molecular
properties to be quantified. As such, VolSurf affords
much structural information of use in designing BBB+
or BBB- candidates, and in defining an ideal property
profile in similarity searches.

It is also of interest to note that VolSurf descriptors
are independent of the alignment of molecules and
relatively independent of conformational sampling and
averaging. They are also fast to compute and easy to
interpret. Since the determination of molecular descrip-

Figure 5. PLS coefficient plot for the global model (training and test sets combined) for the correlation of VolSurf descriptors
with blood-brain barrier permeation. Shading refers to the different energy levels used (see Table 4).
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tors and the generation of the model have been designed
for easy transport, the method is accessible to all
researchers and should help them in designing and
selecting candidates.

Acknowledgment. We are grateful to Dr. M. Grug-
ni (SmithKline Beecham Farmaceutici, Milano, Italy)
for information on some of the compounds used in the
test set. We also thank Prof. S. Clementi, Dr. M. Pastor,
Dr. P. Benedetti, and Prof. R. Mannhold for valuable
discussions and advice. B.T. and P.A.C. are indebted to
the Swiss National Science Foundation for support.

References
(1) ombardo, F.; Blake, J. F.; Curatolo, W. J. Computation of Brain-

Blood Partitioning of Organic Solutes via Free Energy Calcula-
tions. J. Med. Chem. 1996, 39, 4750-4755.

(2) Abraham, M. H.; Chada, S.; Mitchell, R. Hydrogen Bonding. 33.
Factors that Influence the Distribution of Solutes between Blood
and Brain. J. Pharm. Sci. 1994, 83, 1257-1268.

(3) Mouritsen O. G.; Jorgensen K. A New Look at Lipid-Membrane
Structure in Relation to Drug Research. Pharm. Res. 1998, 15,
1507-1519.

(4) Basak, S. C.; Gute, B. D.; Drewes, L. R. Predicting Blood-Brain
Transport of Drugs: A Computational Approach. Pharm. Res.
1996, 13, 775-778.

(5) Young, C.; Mitchell, R. C.; Brown, T. H.; Ganellin, C. R.;
Griffiths, R.; Jones, M.; Rana, K. K.; Saunders: D.; Smith, I. R.;
Sore, N. E.; Wilks, T. J. Development of a New Physicochemical
Model for Brain Penetration and Its Application to the Design
of Centrally Acting H2 Receptor Histamine Antagonists. J. Med.
Chem. 1998, 31, 656-671.

(6) Cruciani, G.; Crivori, P.; Carrupt, P. A.; Testa, B. Molecular
Fields in Quantitative Structure-Permeation Relationships: The
VolSurf Approach. Theochem In press.

(7) Gardina, G.; Clarke, G. D.; Grugni, M.; Sbacchi, M.; Vecchietti,
V.; Central and Pheripheral Analgesic Agents: Chemical Strate-
gies for Limiting Brain Penetration in Kappa-Opioid Agonists
Belonging to Different Chemical Classes. Farmaco 1995, 50,
405-418.

(8) Shaw, J. S.; Carrol, J. A.; Alcock, P.; Main, B. G. ICI204448: a
k-Opioid Agonist with Limited Access to the CNS. Br. J.
Pharmacol. 1989, 96, 986-992.

(9) Goodford, P. J. Computational Procedure for Determining
Energetically Favourable Binding Sites on Biologically Impor-
tant Macromolecules. J. Med. Chem. 1985, 28, 849-857. (b)
Bobbyer, D. N. A.; Goodford, P. J.; McWhinnie, P. M. New
Hydrogen-Bond Potential for Use in Determining Energetically
Favourable Binding Sites of Molecules of Known Structure. J.
Med. Chem. 1989, 32, 1083-1094.

(10) Guba, W.; Cruciani, G. A Novel Approach for the Multivariate
Modeling of Pharmacological Data Using Molecular Field De-
rived Descriptors. In Molecular Modelling and Prediction of
Bioreactivity; Guberrtofte, K., Jorgensen, F. S., Eds.; Plenum:
New York, 2000; pp 89-95.

(11) Pearlman, R. S. 3D Molecular Structure: Generation and Use
in 3D Searching. In 3D QSAR in Drug Design-Theory Methods
and Applications; Kubyni, H. Ed.; Escom Science Publishers:
Leiden; 1993, p 41-79.

(12) SYBYL, Tripos Associates, St. Louis, MO.
(13) Cramer, C. J.; Hawkins, G. D.; Lynch, G. C.; Giesen, D. J.; Rossi,

I.; Storer, W. J.; Thrular, D. G.; Liotard, D. A. AMSOL: An SCF
Program Incorporating Free Energy in Aqueous Solution and
Semiempirical Charge Models. QCPE Bull. 1995, 15, 41.

(14) Chirlian, L. E.; Francl, M. M. Atomic Charge Derived from
Electrostatic Potentials: A Detailed Study. J. Comput. Chem.
1987, 8, 894-905.

(15) Carrupt, P. A.; Gaillard, P.; Billois, F.; Weber, P.; Testa, B.;
Meyer, C.; Perez, S. The Molecular Lipophilicity Potential
(MLP): A New Tool for logP Calculations and Docking, and in
Comparative Molecular Field Analysis (CoMFA). In Lipophilicity
in Drug Action and Toxicology; Pliska, V., Testa, B., van de
Waterbeemd, H., Eds.; VCH: Weinheim, 1995, pp 195-215.

(16) GRID v.17, Molecular Discovery Ltd. Oxford, GB, 1999.
(17) Connolly, M. L. http:// www.netsci.org/ Science/Comp-chem/

feature14.html.
(18) Mannhold, R.; Cruciani, G.; Weber, H.; Lemoine , H.; Derix, A.;

Weichel, C.; Clementi, M. 6-Substituted Benzopyrans as Potas-
sium Channel Activators: Synthesis, Vasodilator Properties, and
Multivariate Analysis. J. Med. Chem, 1999, 42, 981-991.

(19) Wold, S.; Esbensen, K.; Geladi, P. Principal Component Analysis.
Chem. Intell. Lab. Syst. 1987, 2, 37-52.

(20) Dunn, W. J.; Wold, S. Pattern Recognition Techniques in Drug
Design. In Comprehensive Medicinal Chemistry; Vol. 4, Hansch,
C., Sammes, P. G., Taylor, J. B., Eds.; Pergamon Press: Oxford,
1990; p 691-714.

(21) Cruciani, G.; Clementi, S. GOLPE: Philosophy and Applications
in 3D-QSAR. In Advanced Computer-Assisted Techniques in
Drug Discovery. van de Waterbeemd, H. Ed.; VCH: Weinheim,
1994, p 61-88.

(22) Cruciani, G.; Clementi, S.; Baroni, M.; Pastor, M. Recent
Development in 3D-QSAR Methodologies. In Rational Molecular
Design in Drug Research; Alfred Benzon Symposium 42, Lilje-
fors, T., Jorgensen, F. S., and Krogsgaard-Larsen, P., Eds.;
Munskgaard: Copenhagen, 1998, p 87-97.

(23) Wold, S.; Albano, C.; Dunn, W. J., III; Edlund, U.; Esbensen,
K.; Geladi, P.; Helberg, S.; Johansson, E.; Lindberg, W.; Sjos-
trom, M. Multivariate Data Analysis in Chemistry. In Chemo-
metrics Mathematics and Statistics in Chemistry. Kowalsky, B.
R. Ed.; Dordrecht: Holland, 1983; p 17-96.

(24) Clementi, S.; Cruciani, G.; Curti, G.; Skagerberg, B.; PLS
Response Surface Optimisation: The CARSO Procedure. J.
Chemom. 1989, 3, 499-509.

(25) VolSurf v.2.0, Multivariate Infometrics Analysis, Perugia, Italy
1999.

(26) Sadowski, J.; Kubinyi, H. A Scoring Scheme for Discriminating
Between Drugs and Nondrugs. J. Med. Chem. 1998, 41, 3325-
3329.

(27) Ajay, W.; Walters, P.; Murckp, M. A. Can We Learn to Distin-
guish Between Drug Like and Nondrug Like Molecules? J. Med.
Chem. 1998, 41, 3314-3324.

(28) Fischer, S.; Renz, D.; Schaper, W.; Karliczek, G. F. In Vitro
Effects of Fentanyl, Methohexital, and Thiopental on Brain
Endothelial Permeability. Anesthesiology 1995, 82, 451-458.

Figure 6. GRID 3D molecular fields of SB204459 (upper part)
and GR88377 (lower part) calculated with a water probe. The
zones shown are the hydrophilic regions contoured at -3 kcal/
mol. The arrows represent the integy moment’s pattern
calculated at eight energy levels as reported in Table 4.

Predicting Blood-Brain Barrier Permeation Journal of Medicinal Chemistry, 2000, Vol. 43, No. 11 2215



(29) McCall, A. L.; Mellington, W. R.; Wurtman, R. J. Blood-Brain
Barrier Transport of Caffeine: Dose-Related Restriction of
Adenine Transport. Life Sci. 1982, 31, 2709-2715.

(30) Pardrigde W. M. Transport of Protein-Bound Hormones into
Tissues in Vivo. Endocr. Rev. 1981, 2, 103-123.

(31) Schinkel, A. H.; Wagenaar, E.; Carla A. A. M.; van Deemter, L.
P-Glycoprotein in the Blood-Brain Barrier of Mice Influences
the Brain Penetration and Pharmacological Activity of Many
Drugs. J. Clin. Invest. 1996, 97, 2517-2524.

(32) Jonker, J. W.; Wagenaar, E.; van Deemter, L.; Gottschlich, R.;
Bender, H. M.; Dasenbrock, J.; Schinkel, A. H. Role of Blood-
Brain Barrier P-glycoprotein in Limiting Brain Accumulation
and Sedative Side-Effects of Asimadoline, a Peripherally Acting
Analgesic Drug. Br. J. Pharmacol. 1999, 127, 43-50.

(33) Brown, A.; Griffiths, R.; Harvey, C. A.; Owen, D. A. A. Pharma-
cological Studies with SK&F93944 (Temelastine), a Novel
Histamine H1-receptor Antagonist with Negligible Ability to
Penetrate the Central Nervous System. J. Pharmacol. 1986, 87,
569-578.

(34) Yamaguchi, T.; Hashizume, T.; Matzuda, M.; Sakashita, M.;
Fujii, T.; Sekine, Y.; Nakashima, M.; Uematsu, T. Pharmacoki-
netics of the H1-Receptor Antagonist Ebastine andd its Active
Metabolite Carebastine in Healthy Subjects. Arzneim.-Forsch.
(Drug Res.) 1994, 44, 59-64.

(35) Lin, H. J.; Chen, I.-Wu.; Lin, T.-H. Blood-Brain Barrier Perme-
ability and in Vivo Activity of Partial Agonists of Benzazepines
Receptor: A Study of L-663, 581 and Its Metabolites in Rats. J.
Pharmacol. Exp. Ther. 1994, 271, 1197-1202.

(36) Jones, D. R.; Hall, S. D.; Jackson, E. K.; Branch, R. A.; Wilkinson,
G. R. Brain Uptake of Benzodiazepines: Effects of Lipophilicity
and Plasma Protein Binding. J. Pharmacol. Exp. Ther. 1988,
245, 816-822.

(37) Ooie, T.; Terasaki, T.; Suzuki, H.; Sugiyama, Y. Kinetic Evidence
for Active Efflux Transport Across the Blood-Brain Barrier of
Quinolone Antibiotics. J. Pharmacol. Exp. Ther. 1997, 283, 293-
304.

(38) Jaehde, U.; Goto, T.; de Boer, A. G.; Breimer, D. D. Blood-Brain
Barrier Transport Rate of Quinolone Antibacterials Evaluated
in Cerebrovascular Endothelial Cell Cultures. Eur. J. Pharm.
Sci. 1993, 1, 49-59.

(39) Cecchetti, V.; Filipponi, E.; Fravolini, A.; Tabarrini, O.; Bonelli,
D.; Clementi, M.; Cruciani, G.; Clementi, S. Chemometric
Methodologies in a Quantitative Structure-Activity relationship
Study: The Antibacterial Activity of 6-Aminoquinolones. J. Med.
Chem. 1997, 40, 1698-1706.

(40) Cruciani, G.; Baroni, M.; Clementi, S.; Costantino, G.; Riganelli,
D.; Skagerberg, B. Predictive Ability of Regression Models. Part
I: Standard Deviation of Prediction Errors (SDEP). J. Chemom.
1992, 6, 335-346.

(41) Lin, T. H.; Lin, J. H. Effect of Protein Binding and Experimental
Disease States on Brain Uptake of Benzazepines in Rats. J.
Pharmacol. Exp. Ther. 1990, 253, 45-50.

(42) Aasmundstad, T. A.; Morland, J.; Paulsen, R. R. Distribution of
Morphine 6-Glucuronide and Morphine Across the Blood-Brain
Barrier in Awake, Freely Moving Rats Investigated by in Vivo
Microdialysi Sampling. J. Pharmacol. Exp. Ther. 1995, 275,
435-441.

(43) Habgood, M. D.; Liu, Z. D.; Dehkordi, L. S.; Khodr, H. H.; Abbott,
J.; Hider, R. C. Investigation Into the Correlation Between the
Structure of Hydroxypyridinones and Blood-Brain Barrier
Permeability. Biochem. Pharmacol. 1999, 57, 1305-1310.

(44) Tse, F. L. S.; Laplanche, R. Absorption, Metabolism, and
Disposition of [14C]SDZ ENA 713, an Acetylcholinesterase
Inhibitor, in Minipigs Following Oral, Intravenous, and Dermal
Administration. Pharm. Res. 1998, 15, 1614-1620.

(45) Calcutt, C. R.; Ganellin, C. R.; Griffiths, B. K.; Maguire, L. J.
P.; Mitchell, R. C.; Mylek, M. E.; Parsons, M. E.; Smith, I. R.;
Young, R. C. Zolantidine (SK&F95282) Is a Potent Selective
Brain-Penetrating Histamine H2-Receptor Antagonist. Br. J.
Pharmacol. 1988, 93, 69-78.

(46) Jolliet, P.; Simon, N.; Brée, F.; Urien, S.; Pagliara, A.; Carrupt,
P. A.; Testa, B.; Tillement, J.-P. Blood-to-Brain Transfer of
Various Oxicams: Effects of Plasma Binding on Their Brain
Delivery. Pharm. Res. 1997, 14, 650-656.

(47) Raveglia, L. F.; Giardina, G. A. M.; Grugni, M.; Hay, D. W.;
Farina, C.; Graziani, D.; Luttman, M. A.; Potts, W. M.; Salter,
C. J.; Discovery of Potent and Selective, Non Brain Penetrant
NK-3 Receptor Antagonists. Abstract of the First Italian-Swiss
Meeting on Medicinal Chemistry, Torino, Italy, Abstract, 1997,
p 49.

(48) Babe, S. K., Jr.; Serafin, W. E. Histamine, Bradykinin, and their
Antagonists. In Goodman and Gilmans. The Pharmacological
Basis of Therapeutics, 9th ed.; Hardman, J. G., Limbird, L. E.,
Molinoff, P. B., Ruddon, R. W., Gilman A. G., Eds.; New York,
1996; p 581-600.

(49) Pagliara, A.; Testa, B.; Carrupt, P.-A.; Jolliet, P.; Morin, C.;
Morin, D.; Urien, S.; Tillement, J.-P.; Rihoux, J.-P. Molecular
Properties and Phamacokinetic Behavior of Cetirizine, a Zwit-
terionic H1-Receptor Antagonist. J. Med. Chem. 1998, 41, 853-
863.
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